آموزش AHP(Analytical Hierarchy Process) فرایند تحلیل سلسله مراتبی(قسمت۲)


در این پست قصد دارم مراحل لازم فرایند تحلیل سلسله مراتبیAHP را آموزش دهم ،در این پست به تعریف وآموزش AHP همراه با روش های مورد نیازپرداخته ومورد بررسی خواهد گرفت امیدوارم این پست مورد پسندشما قرار  گیرد.

 

فرایند تحلیل سلسله مراتبی در یک نگاه

  • ساخت سلسله مراتبی
  • مقایسه های زوجی
  • ترکیب وزنها
  • تحلیل حساسیت
  • روش رتبه بندی

 

در هر فرایند سلسله مراتب مسئله به ابعاد کوچکتر تقسیم می شود و در نهایت عوامل کوچکتر با یکدیگر ترکیب شده تا بتوانیم گزینه مناسب تر برای هدفمان مشخص کنیم.

ساخت سلسله مراتبی:هدف،معیارها،زیرمعیارها و گزینه ها را برای خودمان مشخص کنیم.

مقایسه های زوجی:مقایسه دو مقدار در یک زمان راحت تر و آسان تر از این است که قصدداشته باشیم تمام معیارهایمان را با یکدیگر مقایسه کنیم.

ترکیب وزنها:در این مرحله باید مشخص کنیم که هر یک از معیارها نسبت به معیارهای دیگر چقدر برای ما حائزاهمیت می باشد.مثلا اهمیت عوامل اقتصادی نسبت به عوامل فرهنگی ،که این اهمیت برای ما محاسبه شده و برچه اساسی می باشد.

مثال

تصور کنید که از بین سه اتومبیل A,B,C یکی را انتخاب کنیم چهار معیار:راحتی ، قیمت ، مصرف سوخت، مدل مطرح می باشد .حل این مثال را طی قدمهای زیر تشریح می کنیم:

ساختن سلسله مراتبی

محاسبه وزن

روش محاسبه جمع وزنی را می توان برای رسیدگی به متغیرهای ورودی کمی و کیفی استفاده کرد. متغیرهای کمی را می توان به راحتی وزن کرد و در وزن مربوطه ضرب کرد، در حالی که متغیرهای کیفی را می توان با استفاده از مقیاس به نمره های عددی تبدیل کرد و سپس وزن کرد و در وزن مربوطه ضرب کرد.

وزن های اختصاص داده شده به متغیرهای ورودی را می توان با استفاده از روش های مختلفی مانند قضاوت متخصص، تجزیه و تحلیل آماری یا ترکیبی از هر دو تعیین کرد. قضاوت متخصص شامل درخواست از کارشناسان موضوع است تا نظر خود را در مورد اهمیت نسبی متغیرهای ورودی ارائه دهند. تجزیه و تحلیل آماری شامل تجزیه و تحلیل داده های تاریخی یا انجام بررسی هایی برای تعیین اهمیت نسبی متغیرهای ورودی است.

یکی از مزایای روش محاسبه جمع وزنی این است که به تصمیم گیرندگان اجازه می دهد چندین معیار یا عامل را در یک امتیاز واحد بگنجانند که می تواند فرآیند تصمیم گیری را ساده کند. به عنوان مثال، در ارزیابی نامزدهای شغلی، از روش جمع وزنی می توان برای ترکیب متغیرهایی مانند تحصیلات، تجربه، و مهارت ها در یک نمره ترکیبی استفاده کرد که سپس می توان از آن برای رتبه بندی داوطلبان استفاده کرد.

با این حال، یکی از محدودیت‌های روش محاسبه جمع وزنی این است که فرض می‌کند متغیرهای ورودی مستقل از یکدیگر هستند و هیچ گونه تعامل یا وابستگی بین آنها وجود ندارد. در برخی موارد، متغیرهای ورودی ممکن است به روش‌های پیچیده‌ای با یکدیگر تعامل داشته باشند، که ممکن است با روش جمع وزنی به طور کامل در نظر گرفته نشود.

به طور کلی، روش محاسبه جمع وزنی ابزاری مفید و همه کاره برای مسائل تصمیم‌گیری و بهینه‌سازی است و می‌تواند به تصمیم گیرندگان کمک کند تا معیارها یا عوامل متعددی را در یک امتیاز ترکیبی در نظر بگیرند. با این حال، مهم است که وزن ها و مفروضات مربوط به روش را به دقت در نظر بگیرید تا اطمینان حاصل شود که نتایج به طور دقیق منعکس کننده تصمیم یا مسئله بهینه سازی هستند.

یکی از چالش های روش محاسبه جمع وزنی، تعیین وزن مناسب برای هر متغیر ورودی است. در برخی موارد، تعیین وزن ها ممکن است به طور عینی دشوار باشد و ممکن است به یک رویکرد ذهنی نیاز داشته باشد. این می تواند یک محدودیت روش باشد، زیرا ممکن است سوگیری و عدم قطعیت را در فرآیند تصمیم گیری ایجاد کند.

یکی از راه‌های مقابله با این چالش، استفاده از تحلیل حساسیت برای آزمایش استحکام نتایج به وزن‌های مختلف متغیرهای ورودی است. تحلیل حساسیت شامل تغییر وزن متغیرهای ورودی و مشاهده چگونگی تغییر نتایج است. این می تواند به تصمیم گیرندگان کمک کند تا اهمیت نسبی هر متغیر ورودی را درک کنند و منابع بالقوه عدم قطعیت یا سوگیری در نتایج را شناسایی کنند.

محدودیت دیگر روش محاسبه جمع وزنی این است که یک رابطه خطی بین متغیرهای ورودی و خروجی را فرض می کند. در برخی موارد، این رابطه ممکن است پیچیده تر باشد و روش جمع وزنی ممکن است رابطه واقعی را به درستی نشان ندهد. در چنین مواردی، تکنیک‌های پیشرفته‌تر، مانند شبکه‌های عصبی یا تحلیل رگرسیون، ممکن است مناسب‌تر باشند.

روش جمع وزنی علیرغم محدودیت‌هایی که دارد، ابزاری ساده و مفید برای مسائل تصمیم‌گیری و بهینه‌سازی است. با ترکیب چندین معیار یا عامل در یک امتیاز ترکیبی واحد، تصمیم گیرندگان می توانند تصمیمات آگاهانه و عینی تری بگیرند. با این حال، مهم است که وزن ها و مفروضات مربوط به روش را به دقت در نظر بگیرید تا اطمینان حاصل شود که نتایج به طور دقیق منعکس کننده تصمیم یا مسئله بهینه سازی هستند.

ساختار سلسله مراتبی انتخاب بهترین اتومبیل

محاسبه وزن

وزن اتومبیل ها را از لحاظ معیارهای مختلف بررسی کردیم و زمانی که می خواهیم مقایسات زوجی را براساس جدول نوع کمیتی انجام دهیم از۱تا۹ هر معیاری که مقایسه می شود یک عددی را به خودش اختصاص می دهد.

وزن محاسبات زوجی چگونه تشکیل شده و سلول ها چگونه پرمی شوند؟ماتریس ها مجموعه ای از سطرها و ستون ها هستند.اتومبیلAدر مقایسه با اتومبیل A قرار می گیرد چون گزینه ما یکسان بوده و عددی که تعلق می گیردعدد۱می باشد.همچنین اتومبیل Bبا اتومبیل Bمقایسه می شود و عدد۱ تعلق می گیرد. اتومبیلCدر مقایسه با اتومبیل C قرار می گیرد چون گزینه ما یکسان بوده و عددی که تعلق می گیردعدد۱می باشد.

پس نتیجه می گیریم هر ماتریس که دارای سطر و ستون تشکیل شده باشدقطر اصلی آنها دارای عدد۱ است.

فرض کنید قصد داریم اتومبیل A را با اتومبیل B از لحاظ راحتی مقایسه کنیم  و بررسی های صورت گرفته اتومبیل A نسبت به اتومبیل شماره ۲دارای اهمیت و وزن دو برابر می باشد.پس زیر اتومبیل B عدد ۲ قرار می دهیم و اتومبیل A را با اتومبیل C مقایسه می کنیم . اهمیت ارزش اتومبیل A از لحاظ راحتی نسبت به اتومبیل C عدد۸هست پس در این سلول شماره ۸جای گذاری می کنیم.

سایر سلول ها چگونه پر می شوند؟یکی از مهمترین اصول فرایند تحلیل سلسله مراتبی شرط معکوسی  است اگر یک معیار یا یک گزینه nبرابر معیار دیگر باشد بر تبع معیار شماره۲ اهمیتش نسبت به معیار شماره۱، n/1 می شود.پس اتومبیل B در مقایسه با اتومبیل  A از لحاظ راحتی عدد۲/۱ می شود و در واقع معکوس ۲قرار می دهیم و عدد۲/۱ می شود.

وقتی اتومبیل C در مقایسه با اتومبیل A قرار می دهیم براساس شرط معکوسی که داشتیم عدد۸/۱ در مقایسه باعدد۸که در C داشتیم تعلق می گیرد.

اتومبیل شماره B را با اتومبیل شماره C مقایسه کردیم واز لحاظ راحتی اهمیت اتومبیل B نسبت به اتومبیل Cبرابر با عدد۶است پس عدد۶قرار می دهیم.

بدون دیدگاه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

خانهدربارهتماسارتباط با ما